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ABSTRACT

The background of nicrostructure and its effect on sound propagation
is reviewed. The expendable bathythermograph (XBT)} system and current
digitizing procedures are evaluated to determine their adequacy in
investigating vertical thermal microstructure. Several methods of
microthermal analysis are proposed. Temperature gradient versus depth
plots are used to analyze data from several ocean regions - Atlantic
Coastal, Andaman Sea, Eastern North Pacific, and the northern boundary
of the Gulf Stream. Analysis of these data suggest a water mass depend-
ence of the thermal microstructure. The significance of the small-scale

structure to Naval operations is discussed.
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I. SIGNIFICANCE OF MICROTHERMAL STRUCTURE

Naval interest in the thermal structure of the ocean is presently
centered on gross features such as sea surface temperature, mixed layer
depth, thermocline gradient, and depth to the bottom of the thermocline.
Some attertion has been given, especially in the Canadian Navy, to the
transients in the mixed layer [Tully, 1964] and their possible associ-
ation with internal waves. The above gross features are used primarily
as a means of classifying thermal structure.

Technological developments have led to measurements which indicate
the thermal structure is made-up of layers of varying thickness; from
less than a centimeter to tens of meters [Stommel and Federov, 1967;
Osborn, 1969; for example].

Of the variables affecting sound velocity in the ocean, temperature
has the greatest effect. The presence of variations in temperature, or
temperature gradient:, causes sound velocity fluctuations to occur.
Research on the effects of the thermal layers on sound in the ocean show
that further investigation in theory and experiment is required. Small
scale sound velocity variations cause irregular bending of sound rays.
The microstructure can affect attenuation, forward and backward scatter-
ing, reverberation, reflection, and refraction which can converge or
diverge the energy in a sound beam [Mever and Romberg, 1963]. The
physical features of the microthermal structure must be adequately
desecribed befeore their effects upon acoustic propagation can be fully

understood.




The purpose of this thesis i3 to review the present knowledge con-
cerning microstructure as measured by expendable bathythermographs (XBT),
te evaluate the capability of the XBT in measuring microthermal structure,

to develop a scheme of quantitatively examining the microthermal structure,

and to test this scheme on real data.




II. REVIEW OF PRESKNT KNOWLEDGE

A. MICROTHERMAL STRUCTURE IN THE OCEAN

Prior to 1937, vertical thermal structure wasz messured at discrete
points using reversing thermometers. This method provided a point-to-
point analysis of the vertical structure &t one location. Even using
point-to-point measurements, it was clear that the temperature vari-
ability decreased with depth in most regions. In fact, the most common
analysis of the tempsrature snd salinity data, T-S correlation, usually
ignored the upper 100 meters or so. However, this same analysis showed
that in many ocean regions, in deep water, (e.g., below 1000 to 2000 m),
the varisbility was on ths order of the instrument error [Sverdrup,
Johnson and FPlemming, 1942]., This result was not unexpected because
the gradients in the deep ocean became smaller. The discrete measure-
ments of the Nansen cast are not suitable for studying small scale
variability,

The davelopment of the mechanical bathythermograph (MBT) by Spilhaus
[1938] provided the first convenient means of measuring a continuous
profile of temperature. The mechanical bathythermograph was widely used
during World War II. A large number of bathythermograms with double
traces, which couil not be explained as instrument errors, were dis-
covered [Urick and Searfoss, 1948]. The double traces indicated that
small-scale horizontal and/or vertical temperature variations occurred
between the lowering and raising of the MBT. Urick and Searfoss [1949)
recognized that this small-scale microsttgcture could be significant to

sound propagation, depending on the size and shape of the inhomogeneity.




Rorisontal microthermal structure was measured by Holder in 1944
using & thermopile mounted on a submarine. He detected horizoental
temperature differences of 0.C2F over distances of about 10 m {Smith,
196). Measurements of these horizontal temperature variations were
also made by Urick and Scarfoss {1948, 1349] in July of 1948 near Kay
West, Plorida. With s thermocouple mounted on the coaning tower and,
latsr, its bow, a submarine proceeded at a constant speed and dapth,

while the probe measured the water temperature to a resolution of

0.003¢C.
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Figure 1. Microthermal Variations at Various Depths
{Urick and Searfoss, 1948].

Urick and Searfoss [1949] calculated the peak-to-peak root-mean-

squere {rma) varlation for peaks in excess of 20 percent of the total
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variation in & record calling thiz the root-mean-square meximum (rmsm).
& significent difference between the value of rmsm in the mixed layer
and in the thermocline was observad. In the mixed layer a mean rmsm
value of 0.013C was observed. In the thermocline, the mean value was
0.450C. The rmsm increased with depth in the mixed layer and decreased
with depth in the thermocline. Applying Taylor's hypothesis, the mean
horizontal thermal 'patch size'" was found to vary from 5 to 30 m in the

mixed layer and from 30 to 200 m in the thermocline region [Urick and

Searfoss, 1949],

Liebermann [1951] mounted a sensitive platinum-resistance thermom-
eter and a thermocouple on the periscope of a submarine. The platinum-
resistance element could resolve spatial temperature variations on the
order of 10 cm in horizontal distances as the submarine proceeded at a
constant speed of a few meters per second at a fixed depth (Figure 2).

To characterize the temperature fluctuations, he used the autocorrelation
function. ''Patch size" was defined as the distance of the microthermal
structure, within which the temperature variations maintained coherence.

The function is given by:
R (o) = [ [T (0T (ebog)] dx. M
0

His results could be fit equally well by an exponential,

R (o) = &™/8 )
or the Gaussian,
. 2
R (o) = e-CO/a) 3)

where:

i1
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T (x) = temperatute at some point x;
T (x+oo) = tempersture at another point displsced a distance Po
from x;
o @ autocorrelation distance;

<> = am "patch size".
Whersas, the sxponential function fitted the data points and decayed
rapidly as p increased (Figure 2), it did not have a sero slope &t the
origin, thus, the exponential function was not appropriate for very
small correlation distance (e.g., & few cm or less) because of heat
conductivity in sea water. He proposed the Gaussian function to
correct this difficulty, reasoning that thermal conductivity would
prevent any discontinuity in the temperature field [Lisbermann, 1931],

Liebermann assumed that the thermal microstructure reprssented a
cloud of spheres with a Rayleigh distribution having & mean sizs value

of the correlation distance and therafore yielding
R@ =R (@)= c-l. )

Using this definition, the mean sige of the inhomogeneities, a, was
found to equal 60 cm in the ocean (Figure 2).

Piip [1961) investigated the sound velocity microstructure in the
sound channel off Bermuda with a NBS velocimeter. It was noted that a
number of thin steps remained over periods of hours, some oscillating
30 m in depth in a three-hour period. At the same statinon and same
depth, sound velocity changes of one m/sec in a few hours were common
and 'nearly the rule"., The sound velocity axis was observed to change
150 m in depth and 3.5 m/ser over a three-month period. Pipp showed

that the base of the main thermocline (about 1000 to 1300 m) exhibited
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relativsly large and rapid changes in sound velocity in an inhomogeneous

region in a constent state of fluctuation.
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Figure 2. Temperature Fluctuations and Associated Correlation Function

(After Liebermann)

Small-scale tempsrature and salinity structure was msasured with a
salinity, temparaturs, and depth recorder (STD) by Stommel and Pederov
{1967 ] near Timor and Mindinao during July of 1965. Their measurements
revealad thet the vertical microstructure 2stually consisted of very
thin high-gradient lsyers. The thin laysrs were separated by thicker
layer~ of nesrly homogeneous (isothermal or isohaline) water, f.e.,

step-like in appearance on their SID traces. By following a discrete




feature from one cast to the next, homogeneous layers were found to be

continuous from two to 20 km horizeantaliy and to range in thickness from .
two to 40 m (Figure 3). A boot-like feature was found at the bottom of

the mixed layer (Figure 4). At a depth of 200 to 300 m, the mean thermal

gradient was sbout 0.040C/m. Jn the thin steps, the gradient was leas

than 0.003C/m, and in the homogeneous steps, the thermal gradient was

greater than 0.350C/m. Stommel and Pederov concluded that the ocean

s

consisted of nearly homogeneous layers separated by steps with extremely
high thermal gradients.

Tate and Howe [1968}, in the summer of 1966 in the Northwestern
Atlantic, used an STD to look at the themocline stratification in the
Mediterranean Water intrusion at a depth of 1280 to 1500 m. They found
layering with steps varying on the order of 0.17 to 0.35C in tempera-
ture, from 0.02 to 0.055 o/oo in salinity, and from thickness of 135 to
30 m (Pigure 5). A step's average temperature change of 0.25C produced
a g, change of -0.044, while the average salinity step of 0.044 o/oo
produced a o, change of +0.039. The resulting change of 0, (-0.005)
gave a slightly stable layer system in a situation which was clearly
one of opposing salinity and temperature density gradients.

Cooper and Stommel [1968], using an STD, found the main thermocline
in the Sargasso Sea to consist of regular salinity and temperature steps ;
of homogeneous layers three to five meters thick, separated by trans-
itional layers 10 to 15 meters thick, with temperature changes of 0.30
to 0.50C and salinity changes of 0.04 to 0.10 o/oo (Figure 6). The
horizontal extent of these steps was between 400 to 1000 meters. The

main thermocline contained up to 100 steps on each cast. '
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Figure 3.a.

Figure 3.b,

Photographic copy of actual STD trace (not retouched) of
station 21 off Mindinao. Depth scale is 500 m, each small
division being 5 m. The salinity curve, labeled S, has
the smallest division being 0.05 o/oo. The temperature,
labeled T, has & smellest division of 0.05C. The lamina
B is so labeled. Because the pens cannot both traverse
the same path mechanically, the temperature curve is
offset downward by 5 m and always reads 5 m too deep.
The salinity scale is not offset in depth. Uniform
corrections for salinity of -0.9 o/oo and temperature of
0.07C have not been applied.

A composite chart-graph for lamina B off Mindinao. Each
square is 0.05C wide (8.5 to 9.0C) and 50 m high. The
small arrow indicates » depth of 400 m in each square.
Numbers in the lower le.t hand corners are the station
numbers., The distances from stations 18 to 25 and 26 to
35 are about 10 nm. For lamina B, the large geographical
extent of this small lamina is self-evident.

[Stommel and Pederov, 1967]
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Woods [1968, 1968a] investigated the micrcstructure in the summer
thermocline off Malta using a temperature-gradient meter for obtaining
the thermal gradient between two thermistors set 50, 25 or 10 cm apart
on a vertical staff. The resolution of the thermal gradient wes within
0.01C per thermistor separation distance. An additional thermistor
recorded temperature. Woods plotted profiles of the thermal gradient
and temperature versus depth (Figures 7, 8 and 9). Using time-lapse
photography, Woods obtained pictures of streaks left in the wakes of
free-dropping dye pellets for shear measurements. A dye-packet array
tied between moored, submerged floats injecting dye intoc selected levels
of the thermocline, indicated that the thermocline was divided into
layers a few meters thick. These layers were characterized by weak
thermal gradients, less than 0.001C/m, and by turbulence with a mean
velocity of less than one mm/sec. The layers were separated by sheets
only centimeters thick. (Sometimes, he detected sheets up to a meter
thick but they appeared as aggragates of the 10 cm thick sheets.) The
sheets were characterized by strong thermal gradients up to 0.05C/em
and little or no turbulence, Mature sheets contained thin laminar-flow
zones in their centers. Neighboring layers had dissimilar properties
indicating different salinities, velocities, and turbidities. This
suggested different trajectories and a very slow exchange of properties
across the intervening sheets. If turbulence was small, flux exchange
was small; therefore, the exchange had tc rely on molecular processes,
which were very slow indeed.

Individual layers were followed horizontally for distances up to

72 km by soundings from high-speed launches. layers were identified on

17
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Pigure 8. Temperature and Temparature-Gradient Soundings for Maltese
Waters, 14 September 1967 [Woods, 1968a].

: Temperature 0918-0919 local time, (i.e., GMT + 1).

Temperature gradisnt 1132-1145 local time.
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successive soundings for maany hours, thus confirming the results of
Stomme! and Federov.

The dye experimunts showed that in & thermocline sheet there was a
central laminar-flow region only a few centimeters thick. Dye was spread
in this region by internal waves to form a "broad carpet of color". This
colored sheet made it possible to photograph the internal waves as they
croesed it. Wave~lengths between 5 and 10 m were dominant and appeared
in long, coherent trains, each associated with & single sheet. They had
heights up to 1.0 m, & phase speed of 2.5 cm/sec and periods of about
5 min. These waves only affected & single sheet, being much shorter than
the long internal waves which move the entire thermocline.

A sheet was defined as stable when it appeared smooth everywhere;

N this indicated laminar flow. When a wave passed over a sheet, shear had
its greatest effects at the crest and trough. Wave shear and drift
shear interacted either cancelling or reinforcing each other causing a
sheet to become unstable and patchy.

Wavelets, about 75 cm in length, caused banding to appear parallel
to the crests and troughs. These wavelets generally formed, grew, and
broke in a period of less than two minutes. Upon breaking in classical
fashion, a second smaller brecker was generally thrown forward. The
wavelets had a maximum height of about 20 cm. After breaking, a turbu-
lence region remained for about 5 minutes, and the scar in the sheet
remained for several hours. These scars were a common feature in

s thermocline sheets. The thinneat sheet observed to become unstable had

a thickness of 3 cm; the thickest was 30 cm. The great majority were

between 8 and 15 cm.

21
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Transient thermociines [Tully, 1964) which occur sporadically between
the surface and the tup of the thermocline were considered as further
examples of sheets. Woods dividas the thermocline into 8 half-dozen or
so layers of low shear and moderate thermal gradient separated by thin
liminar flow sheets on intense shear and thermal gradient. He discussed
the impurtant aspect of heac transfer through such a layered ocean. He
suggested that the molecular heat transfer through the high gradient
stable layers was negligible, bat that heat transfer does take place
through the turbulent scars from one layer to another as an effect of the
breaking of the internal waves.

The use of the Ramsey SVIP (sound velocity, temperature, and pressurs)
probe provides a digital output of these parameters. This instrument has
an accuracy of + 0.01C and + 0.25 percent of depth with a precision of
+ 0.08 m/sec in sound velocity [Lovett, 1968]. In view of the plus-or-
minus-one count for electronic counters, small-scale features, i.e.,
less than + 0.0(C and + 1 m in depth, are ambiguous. Lovett [1968]
discussed the thermal gradients determined with this instrument (Figure
10). The 10 m depth increments he used eliminated some microstructvre;
however, using 5 m increments introduced random readout errors,

Ingham [1968) used an STD probe to investigate the mixed layer in
tropical waters., The vertical salinity and temperature structures
forming the "isothermal" and "isohaline" layers were generally analogous
in the near-surface layers, The difference in the depths of these two
layers exceeded 7.5 m in 45 percent of the casts and 17.5 m in 31 percent
as shrwit by Figure il [Ingham, 1968). Microstructure effects on sound
velocity in the near-surface layers would depend on salinity in some ocean

regions .,
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Pingree {196Y)] using an STD, recorded analogue signals on tape. He
made fine-scale plots of salinity and temperature. In particular, he
investigated the stability of the deep water, i.e., about 500 to 2000 m
(Figure 12).

Osborn [1969) using a free-falling temperature gradient meter
obtained excellent profiles of temperature gradient (Figure 13). Off
San Diego, the horizonta! extent of the layers was greater than 750
meters in the seasonal thermocline, but only a few hundred meters at
depths greater than 400 meters. He noted the layers were, in fact,
made up of even finer layers with &8 thickness of only & few centimeters.
His average sheet was about one meter thick.

Recent work by Neshbya, Neal, and Denncr [1969] using tha expendable
bathythermograph manufactured by General Motors Defense laboratories,
obtsained records of temperature steps (Figures 14, 15 and 16), While
on Ice Station T-3 in the Arctic (near 84-38N, 128-22W), they lowered
XBT probes by hand. The Ice Station results are the first XBT micro-

structure records without ship motion.

B. APPLICATIONS

Urick and Searfoss [1949) calculated theoretically that a sound ray
would be bent through an angle of only 3.7 sec by the average inhomo-
geneity in the mixed layer but as much as 2.1 min of arc in the
thermncline.

Sheehy [1950] measured scnar signal fluctuation as functions of depth
and range. He found the coefficient of variation, defined as the stand-
ard deviation of the amplitudes expressed as a percentage of the mean
amplitude, varied as the square root of range and did not appear to be &

function of depth.
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Pigure 12, T-8 Qurve from 1500 to 1B00 m with a Value Every Meter.
Circles Represent Increments of 2 m {n Depth [Pingree,
19697 .
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Figure l4. Vertical Profile of Temperature Under Ics Station T-3
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Figure 16. Time Sariss with Nigh implification Taken from T-3 in March

1969. Temperature imcreases from vight to left. [Neshbya,
Neal and Denner, 1969).
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Liebermann [1951] described the influen:ze of the wmicrostructure on
acoustic propagation He wrote the sharpness of temperature houndaries
determines influence of the microastructure on acoustic propsgétion.
When temperature changes occur within a distance of less than one
acousti wavelength, the temperature boundaries may reflect aound
energy depending upon the size and shape of the "patch" The tempera-
ture microstructure may reflect, refract, scatter, or focus acoustiL
waves, The microthermai structure was considered to bs made up of
randomly sized "spheres', spaced randomly throughout the medium, with
@ scattering cross section dependent upon the sutocorrelation of the
temperature inhomogeneities, R (o). Comparing derived scattaring cross
section with actual scattering in the ocean ({.e., volume reverberation),
Liebermann concluded the observed reverberation wes higher than one
would expect from thermal inhomogeneities He attributed volume
reverberation to biological scatters.

Liebermann found that refraction effects of the inhomogensities
resulted in warping of the wava fronts, and caused the wave front to
be a complex surface exiribiting both convergence and divergence. The
temporal motion of the inhomogeneities rasulted in sound "scintillation"
at the receiver

Mintzer [1953] found Sheehy's cosfficient of variation to be depend-
ent upon the three-halves power of the range rather than the one-half
power of range.

Skudrzyk [1957] discussed the focusing and defocusing effect within
the focusing range Ty given by r, ™ knz where a is the "patch" radius
and k is the acoustic wavenumber At ranges gzreater than Ty in the

interference range, phase interference results (Figures 17 and .18).
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Figure 17. Illustration of the Various Types of Acoustic Scattering
Dus to & Thermal Patch in the Ses [Whitemarsh, Skudrzyk
and Urick, 1957].
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Figure 18, The Fhasa Angle Between the Incident and the Scattered
Pressure &nd the Fiysical Msture of the Scattering ar a
Function of the Zange [Skudrxyk, 1957).
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Uzing this concept, Skudrzyk (Pigure 19) shows the focusing range T, as
a function of trequency and patch size. (For example, a 50 kiis frequency
sonar has & focusing range of 75 meters, if the patch size is assumed to
be 60 centimeters.) For finding patch size, Skrudsyk used the Urick-
Searfuss [1948] data to show patch size was twice the depth (Figure 20).
Further, Skudrzyk started theoretical;invasti;ation with rpheroidsl
patches, which he found to have a consideraﬁly stronger focusing effect
than the spherical patches.

Whitemarsh, Skudrzyk, and Urick {1957] did additional work with the
spheriodal theory. The correlation functions previously used were dis-
cussed. It was concluded that the present correlation functions were
not suitable and either had to be replaced or redefined. The authors
argued if the temperature microstructure was produced by turbulent
motion in the sea, then the Kolmogorov law for statistical equilibrium
must hold. This, they show, was in excellent agreement with their data,
lending support to continued studies such as are presented in this
thesis, their final conclusion states that the

"... greatest gap seems to lie in the microtherma!
statistics of the ocean. If these were known better

than they are now, apparently the amplitude statistice

of the fluctuations of sound transmitted through the

sea could be predicted roughly, but with some sssurance.”

Works by Peterson [1963], Barakus [1968] and DiNapoli [1969] have
considered the normal mode approach to the interference range solution

for the temperature inhomogeneities and have also investigated the

effects of internal waves on sound in stratified mediums.

1Whitemarsh, D. C., Skudrzyk, E., and Urick, R. J., "Forward Scattering
of Sound in the Sea and Ity Correlation with the Temperature Micro-
structure," J, Acous, Soc. Am., v, 29, p. 1%1, Qctober 1957.
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C. INADEQUACIES OF THE PRESENT THEORY

3ince the thermal microstructure is not related simply to ths gross
thermal fsatures measured on MBTs, there is prasently no easy way to
predict, on a day-to-day basis, the effects of microthermal structure
on the propagatiun of sound in the sea. The theories, so far, have
developed in two classes.

The first theories [Liebermann, 1951; Mintzer, 1953, 1953s, 1954;
and Skudrzyk, 1957] concerned spherical and, more recently, spheriodal
shaped inhomcgeneities throughout the ccean. Part A above has dis-
cussed the present knowledgs of microstructure showing that the long
thin sheets and leyers do exist es microthermal structure. These first
acoustical theories do not apply to what is now described as the micro-
stracture of the ocean.

The theoretical treatment by Whitemarsh, Skudrzyk and Urick [1957],
considering speriodal patches and Kolomogorov's turbulence theories,
could not fird any real theoretical explanation of what happens in the
sea when sound passes through an inhomogeneity. The investigations
using normal modes have not produced any practical operational results.

Lee [1961] using ray path theory, demonstrated the effect of a
typical sinusiodal internal wave o sound intensity in a three-layered
model. For the medium with an internal wave, intensity variations up
to 22 db were found in distances of less than one internal wavelength,
as shown by Figures 21 and 22, 1In contrast, the same medium, without
an internal wave, produced a 5 db variation, including a 2.5 db
spreading loss, over the ssme distance.

Another study investigation the effects of sound velocity micro-

structure was conducted by FPNWC [Wolff, Tatro and Megehee, 1967]. A
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Pigure 21. Diagram of Sound Rays through & Medium Which has ar
Internal Wave on the Thermcclins [les, 1961].
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Pigura 22, Sound lavel in the Medium with an Internal Wave on the
Thermocline. The db reference level i{s that corresponding
to & sound level of 60 db at 1 toot frcm the directional
source (X equals C, Z equals 10 ft) along the horisontal. -
The field is contoured at intervale of 2.5 db [lee, 1961}.
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sophisticeted ray-trscing program [Ayers, Wolff, Carstensen and Ayers, 1966)
vas used fur the analysis. Threc compiete ray trace runs wers made to
the first convergence sons using 120, 54, and 20 digitized sound velo-
city pointa from one SVIP trace contiining sound velocity microstructurs.
The 120-point sound velocity profils preserved all the "wiggles" or
microstructure, the 56-point profils used values at every 50 meter of
depth, and the 20-point profile used the standard oceanographic depth
values for sound velocity (Pigure 23). The range to the first conver-
gence zone agread within 150 yerds for all thrse cases. Based on the

ray trace runs only, it wes concluded the sound velocity microstructure
vas "essentially self-cancelling'" and did not affect the convergence

sone parameters [Wolff, Tatro, snd Meghee, 1967). Propagation loss and

reverbsration effects were not reported.
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III. MEASURING MICROTHERMAL STRUCTURE

A. THE BATHYTHERMOGRAPH

1. Mechanical Bathythermograph

At the present time temperature {s the most readily observed
varisble in the upper few hundre. neters of the ocean. A major con-
tributor to this situation {s a singularly successful oceanographic
instrument known as the mechanical bathythermograph or MBT, Subsequent
to its introduction by Rossby and Montgomery [1934] and perfection by
Spilhaus [1938], the MBT has become one of the basic instruments of
almost ali ocesnographic agencies because of its simplicity of
operation, reliability and relatively low cost. The result has been
that & large number of bathythermograms have been collected.

Researchers during wo:ld War II, using the MBT, observed micro-

thermal structure on their traces, No theory had been formulated which
took into account the effects caused by microthermal structurs on under-
water sound transmission. It was recognized, however, that temperature
microstructure must be conesidered in any explanation of observed under-

water sound transmission [National Defense Research Committee, 1946]).

2. The Expendable Bathythermograph
a. Capabilities
Presently the U, S, Navy is using the XBT system manufactured
by the Sippican Corporation of Marion, Massachusetts. This system con-
sists of an expendable shipboard cannister and probe, shipboard launcher,

and a strip chart recorder. Data so obtained arr submitted to PNWC and

were used in this thesis.




The original Bureau of Ships' specifications [Denner, 1966]

for an XBT system are given in Table 1.

TABLE I
Temperature range Y8F to 96F
Temperature accuracy + 0.4F
Depth range 0 to 1000 ft
Depth accuracy + 2% or 15 £t, whichever
is greater
Ship's speed when launching 4+ 63% of a temperature

step after 3 ft depth
change

The expendable Sippican probe currently used has a
thermistor sensor in its nose. The probe i3 connected electrically
to the recorder by two conductor wires which pay out from both Lhe
probe and the canister. The canaister in the launcher 1is connected
to the recorder by a cable. There are no splices in the wire. The
probe's weight is a critical factor in determining its fall-rate,

The Sippican system was found to be within + 3 gms both with and
without its internal copper wire. (The deviation was fror 0.3% to
0.64% of the total weight of the probe,) The observed average fall-
velocity of the probe was 20.3 + 0.2 ft/sec. A probe, with its
internal wire, had an average terminal velocity of 19.9 + 0.7 ft/sec.
Terminal velocity was veached at 18.0 + 0.5 ft [Gouzie, Sanders and
Littlehale, 1966].

The present XBT strip chart recorder is a Mark 2A model
using pressure sensitive paper for recording the thermal profile. The
paper moves vetticaily on the recorder at a rate of 3.25 in/min. In one
minute, the XBT, falling at 20 ft/sec, will have reached a depth of 1200
ft. Thus, 1200 ft will be recorded on 3.25 inches of chart paper, or

0.0027 of an 1nch of chart paper is used for every foot of fall.
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The chart papsr records horizontally from 28F to 96F in
7.0 inches, or about 0.103 of an inch of chart paper per 1.0F. Table
II shows the resolution capabilities of the paper using different

recording intervals,

TABLE I1IX
Resolstion
Chart Spaci inches Temperature (F) Depth (ft)
9.01 0.0971 3.690
0.005 0.0476 1.045
0.001 0.0097 .369

The response time for the thermistor is 110 milliseconds
nominal and 130 milliseconds maximum [Choste, 1970 and Demeo, 1968].
A time constant-temperature change plot shows that 98.2 percent of &
temperature change has been recorded in 10.4 feet of fall, 83 percent
recorded in 5.2 feet of fall, 68 percent in two feet of fall and 35
percent in one foot of fall (Figure 24).

The thermistor, because of its finite size, has tharmal
inertia which causes it to act as & low pass filter. Az & result,
fine structure is lost or at best smoothed out. The original trace
could be reconstructed if the filtering characteristics (of both phase
and amplitude) of the thermistor were known. These could be obtained
experimentally.

b, Data Handling

Present procedures for handling XBT data &re indicated by
the log sheets which accompany the XBT's in the shipping container,
Pirst, a BATHY or BAXBT message is required to be submitted to the

appropriate addresser using a PRIGRITY precedence message [National
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Oceanographic Data Center, 1968, 1968a). Upon receipt of the BATHY or
BAXBT message the recelving agency uses this as synoptic data for sub-
jective ocean forecasts in his locality. The BATHY or BAXBT i{s for-
warded through the Naval Environmental Data Network to FNWC in Monterey.
FNWC uses the message reports to update its ocean fields for objective
forecasting in varicus oceanographic and meteorological products.

Upon completion of a cruise the ship which took the XBT
cast mails the oviginal trace and log sheet to FNWC for digitizing.
The original XBT trace is digitized for use by FNWC, and, when
requested, the results of the digitizing are provided to the XBT
submitting activity. Upon completion of digitizing, the original XBT
traces are forwarded to the National Oceanographic Data Center (NODC)
for storage in their archives. NODC also receives a copy of the digital
data on tape.

Present procedures at FNWC use DIGITBT and several other
specialized XBT data handling programs. New XBT digitized data are
stacked on the XBT Master File {presently at a rate of about 500 traces

per week).

B, OTHER SENSORS

Sensors for measuring microthermal structure, other than those
discussed elsewhere in this thesis, are numerous.

From a fixed platform, like the NEL Oceanographic Tuwer, thermistor
strings an! arrays are used. Bottom devices, such as thermistors,

attached to the shore or a tower by a wire, have been employed to give

continuous temperature records.
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Prom submarines, thermupiles, thermocouples, therm.stors, platinum
resistance thermometers, and thin fiim thermometers have been employed.
Almost any oceanographic electronic or mechanical thermometer could be

used on a4 submarine.

C. DIGCITIZING PROCEDURES

At the present time, all XBT traces are submitted to Fleet Numerical
Weather Central (FNWC) in Monterey, California, the only digitizing
center fur these stiip chart analogue traces [National Oceanographic
Data Center, 1968, 1968a; and Bauer, 1969]).

At the Point Pinos Annex of FNWC, two Calms Model 480 flat-bed
digital recorders are used to digitize XBT traces in 0.0l inch
increments. These digital recorders are operated in a mode which makes
the recorded intervals dependent on the tracing speed. The Calma
output recorded on digital magnetic tape containing binary mode
characters at a density of 556 bits per inch (BPI) with even parity
and variable length records.

FNWC program DIGITBT, written by Lieutenant N, L. Perkins, USN,
in PORTRAN IV for FNWC's CDC 6500 computer, is used currently for
the reduction of data from XBT traces. FNWC tape input, tape output,
and some other subroutines of DIGITHT are written in COMPASS language.
In order to analyze microthermal structure, DIGITBT was extensively

modified. The new program, referred to as MICROXBT, is included as

Appendix A. The basic proecstures for DIGITBT and MICROXBT programs
are the <ame.,
DIGITBT and MICROXBT programs both convert the X and Y measure-

meat v of the digitizer tnto Jdepth (X) versus temperature (Y) values.
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Corrections «#re made for nonlinearities produced by the XBT recorder in
both the depth and temperature directions. All shipboard XBT recorders
are assumed to produce error-free traces. The 62.CF temperature line
drawn on the trace when the probe is loaded is used as a bazeline for
digitizing. No correction is made if this baseline temperature line
is not the same as the 6Z.0F line printed on the trace paper. An
eye-interpolated value of the XBT-drawn baseline temperature on the
printed temperature grid 1s noted as a part of the identification
record.

The rigid procedures for digitizing require that exactly one
identification (ID) record and two digitized trace records for each
XBT be recorded on the tape, The ID record information contains the
data (day, month, year); time (hour and minute); latitude and longi-
tude (dcgree, minute, hemisphere); baseline temperature (to nearest
0.1C or 0.1F depending on the grid type); printed-grid type; and maxi-
mum depth for the probe (coded as 15 for 1500 ft XBT or 25 for fhe
2500 ft XBT). Each trace record contains pairs of inrcements (AX, AY)
read from the bageline to the true surface temperature, & point 'flag"
and then pairs of values (&X, AY) along the trace to a cut-off depth.
Each trace is digitized twice. The complete procedure is described
by Bauer [1969].

To process digitized XBT data using the DIGITBT program, the two
trace records are compared point-by-point in a deviation test. If
the X and Y paired values (i.e., depth and temperature) differ by more than
0.035 inches, DIGITBT relects the whola XBT record and the XBT trace must

be completely re-digitized. If the XBT record passes the deviation test,
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Temperature units sre cenverted from digitiszed inches to F by a tempera-
ture table and from F to C by formula. Thess depth and temperature
tables were constructed to account for the nonlinearities between the
recorder and the sctual trace. Velues of depth are rounded to the
nsareat m and temperature to the nearest 0.0I1C in DIGITBT. MICROXBT
has eliminated the £t to m and P to C conversions. Depths ave rounded
to the nearest 0.1 ft and temperature to the nearest 0.001F.

After the conversion from ft to the nearest m, DIGITBT removes,
for a second time, any of the rounded-off values which are nonlinsar
between two neighboring points. If depth values appear as duplicates,
one value is omitted in the output listing. In MICROXBT, there are no
duplicate values because 0.1 ft in depth is well beyond the hundredth
of an inch digitizing capability of the digitizer. Thus, by reading
depths in tenths of a ft and temperature in thousandths of a degree F,
MICROXBT looses no values from duplicate depths, and the posuibility of
introducing false linearities is reduced considerably. For these rea-
sons, MICROXBT gives & mucn finer digitized record than DIGITBT,

The DIGITBT output tape is written in binary for the CDC 6500; the
MICROXBT output tape is written for the IBM 360/67 at the Naval Pust-
graduate School (NPS). Appendix C contains the job control cards
(JCL) required for using a CDC 6500 output tap- from MICROXBT with
external BCD at a density of 556 BPI as in input to a separate micro-

thermal gnalysis program at NPS,




IV, MODELS FPOR EXAMI MIC

All models and methods used in this thesis required the output tape
from MICROXBT to be used as a direct input on the seven channel tape
unit. The XBT ID record info.mation was read first and if the recorded
XBT was from a desired geographical region the data (depth and tempera-
ture) were anslysed for microthermal structure at NPS,

A "best" value for the temperature structure was found by using the
depth inflection points from MICROXBT. For this "best" array, tempera-
ture was linearily interpolated to & value for every foot of depth. The
mixed layer depth (MLD) was determined, using inflection points from
MICROXBT, as that depth immediately above the depth vhere the temperature
was 2.0¥ different from that at the surface [Nsval Weather Service, 1967].

Several microstructure models were tried in order to perform an
objective analysis of the oceanic microthermal structure. The use of
a numerical temperaturs derivative model was found to give the most

satisfactory presentation of the microthermal structure.

A. DERIVATIVE MODEL
1. Mathematical Model
The most significant feature of the thermal structure is the
thermal gradient defined as the derivative of the temperature with
respact to depth (dT/dZ). By plotting the gradient versus depth (2),
the thermal structure of the water column is emphasized. Purthermors,
a psrameter such as the thermsl gradient is related to otabiiity,

sntrophy genaration, turbulent hest trameport, and the Brunt-Vaisdla'
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2. Experimental Methods

There are two msthods for sxperimentally determining the thermal
gradient presently fa use.
8. BElectronic

A resistance thermomater in an electronic bridge passing
through water produces a signal vhich is proportional to temperature as
8 function of time. By diffsventiamting this signal with respect to time
(vhich is analogous to differentiating with reapect to distancs), the
values of gradient versus distance the probe travels are fourd,

This mathod was successfully employed by Graut, Moillet and
Vogel [1968), in the horizontal direction for temperature and turbulence
measuremants. A thin-film resistance thermometer, mounted on the bow of
8 submarine, messured temperature versus horizontal distance traveled.
The time derivative was taken to produce a direct plot of dT/dX, the
horisontal thermal gradients.

Osborn [1969] used # thermistor, capacitively coupled to
two differentiating amplifiers, to measure the vertical temperature
gradient with his free-falling gradiometers. His resulting output
(Figure 13) shows a gradient versus depth record for the North Pacific
off the San Diego Trough.

b. Two-probe System

Temperature gradients may be found by using two vertically
spaced thermistors. The temperature difference is a measure of the mean
gradient betweea them. Such & gradient-meter was used by Woods [1968,
1968a) who obtained gradient at various dapths (Figures 7, 8, and 9).
Yhis method La iinited to the resolving power of the thermistors and is

3 funstion of thermistor spucing.




3. Numerical
The numerical method is based on the derivative, 4T7/dZ, for the

gradient but uses the finite difference approximation. The derivative
of the temperature at aay depth T(li) with respect to depth Z is defined

T2,) - 1(2)
g'zu:c ; ) )
i {

which can be showm to equal:
iim
ﬁ * a0

- i + - )

(6)

For this thesis, A2 = | foot, which yields the finite difference approxi-

mation for the vertisal temperature derivative:

Yor this method, & standard or smooth curve was required.
Several standard curves were investigated. The variance and bias were
calculated betwoen the standard and the 'best" curves. The standard vas
found by computing the temperature values for a ssries of specified depths,
The first standerd curve investigated used MLD and the I'NC
significant levels (surface, 100, 200, 300, 400, 600, 800, and 1200 ft).
The tewmpsrature valuss were found using the "best" temperaturs valuss at
those depths. Next, an srray of temperature values wss found at foot
im reaents by linsar [(atevpolation betwsen the tomperaturs valuves at the

tigrificant covale v the WIS Thie wae docignated the FIRC oignificant
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level curve. Calculations of bia: and varisnce did not revesal any cor-
relation with the microthermal structure sasily visible on the X3T trvace.

The second stendard curve investigated usad the tamperatures st
the standard oceanographic atation depths (surface, (0, 20, 30, %0, 70,
160, 150, 200, 250, 300, 400, 300, and 800 m). Since thess depths are
mtric, & linear interpolaticn wae dune hetween the two naighboring
values on the "best curve. Valusa of temperature fur avery foot ware
found by linear interpolations between the standard depth tamperstuce
valuss. Again, no significant correlation w, tad,

The third stendard curve used thss »?andard depth temperature
values but used these standsrd depth values as an input to the LGINTP
subroutine [Denner, 1969). This subroutine uses the four standard depth
poiats neighboring the depth in question to make an “averege" curve from
an upward and downward parabolic interpolation and a linear interpolation.
This schems produces & smoothing of pointe on the curve, This technique
is usually used for iaterpolating standard depth oceanographic data
[Rattray, 1965'. These values, after computing the bias and variance,
again gave no correlation with the microthermal structure.

The LGINTP subroutine was not used with the FNWC significant
level values for smoothing since the YNWC fields assume linear inter-
polation,

Other standards considered, but not investigated, included a
Gaussian standard, using the technique for approximating the tempsrature

structure proposed by Grosfils [1968) and an exponential standard.

Por investigating the tempereture atructute, the "hest' tempers-

ture 40La were sepat 81 ed int  rng FPRME sipnificart jeveie Py pach




significant level, the temperature chinge from one depth to the next
were calculated and then sorted in numerical ascending order with the
I subroutine SHSORT. With these values of temperature changs per foot .
or gradient (F/ft), the temperature structure was now characterized by
the individual thermal gradient values and a total temperature change AT.
Beceuse of the range of tempersture values in the thermocline, this region
of the XBT trace was chosen for developing this method.
The capabilities of the XBT indicate a gradient interval of 0.02
F/ft is easily obtained with a high degree of confidence [Arthur D.
Little, 1966]. Using 0.0Z P/ft for the class interval, the frequency
distribution of gradients was plotted for various XBT traces by signifi-
cant levels. As expected, the greatest range in gradient values usually
occurred in the significant level just below the mixed layer where the
range of temperature values AT was the greatest.
This method appears to give & good indication of the variability
of the thermal structure in the depth intervals investigated. Several
examples of the different types of gradient distributions, using histo-
grams and & cumulative frequency diagram, are shown in Figures 25 through
31. The actual analyzed XBT is also shown on the left of each figure,
Looking at data off San Diego, the first three gradient distribution
diagrams (Figures 25, 26 and 27) show fairly similar cumulative fre-
quency distributions. The next two (Figures 28 and 29) show nearly
identical distributions for water inside the Gulf Stream. The next tw.
gradient distributions (Figures 30 and 31) show water in the Gulf Stream's
fronta! regton. These last two distridutions are not identical for many
rvgacny, bt wainly ba.ause the positive gradient reglon in the sscond

s By p v D omy T g te e it intetvs e n the gradisat
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distribution plot. These results indtcate that the small scale structure
may be water mass related. However, this could not be fully examined in
the time alloted for this thesis but i{s recommended for further

investigatiocn.
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V. APPLICATION OF NUMERICAL DERIVATIVE MODEL

This chapter describes the application of the numericai derivative

model or method (NDM) to several cases of real and assumed data.

A. BASIC CASES

Graphs are used to show the features of the NDM, For each station,
temperature versus depth (T-Z) and temperature gradient versus depth
(G-2) plots were drawn by a CalComp plotter using the computer program
with the DRAW subroutine in Appendix B. The scales are constant for all
plots. The grid squares were drawn for 100-ft depth increments from the
surface to & depth of 900 ft. On the T-Z plots (reporduced digitized XBT
data), temperature was scaled at 10F per grid line. On the G-Z plots, the
gradient was scaled to 0.1F/ft per grid interval, with ch2 axis offset so
that two-thirds of the plot was allocated to negative gradients. This
scaling was chosen so that each huadredth of an inch, the resolving
power of the CalComp plotter, represented one foot of depth and 0.OlF
of temperature or 0.001F/ft of temperature gradient. The plots included
here have been reduced in size, but the relative proportions remain the
same .

1. Linear Gradients

For a temperature distribution with linear thermal gradients,
the G-Z plot is characterized by steps indicating a constant gradient
during a temperature change. For this thesis the strength of a gradient
1s defined as the absolute value of the gradient (in F/ft units) and is
described as strong when greater than 0.3F/ft or weak when less than

0.05F/ft. The term signed strength is defined as the true gradient

6l




ML

value and will thus distinguish absolute and true gradient vslues. The
magnitude of a gradient is defined as the vertical extent of the gradient
measured in feet., The preduct of magnitude and signed strength gives the
total temperature change for tihe extent of the gradient.

a. layer Structure

Figure 32 shows a two-layer temperature structure model with
a T-Z plot on the left and a G-Z plot on the right. The strength of the
upper layer is 0.05F/ft with a magnitude of 200 ft. The lower layer is
weaker (0.02F/ft compared to 0.05F/ft) than the upper step but the magni-
tude is greater (600 ft to 200 ft).

For the multi-layered model (Figure 33) several linear
gradient steps are shown. In the gradient region between 7Q and 90 ft,
the gradient is strong and goes off scale (Figure 33b).

b. Step Structure

A step structure is characterized by thin strong gradient
regions The model (Figure 34) shows clearly that the four steps bet~
ween 60 and 100 ft are stronger than any other steps shown. These four
steps also have the smallest magnitude (five ft) in the figure. The
steps at 200, 300, and 400 £t all have the same strength but increase
in magnitude with depth.

The features of the T-Z trace (Figure 34a) arc easily
described by the G-Z model. The product of signed strength and magnitude
gives rhe total tempera..ce change from the surface temperature to a
given depth for a step-structure temperature profile. The temperature
at any depth could then be found if the sea surface temperature was
known. Thus, with magnitude, signed strength and sez surfuce temperature,

any layered or stepped thermal profile could be raconstructed.
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Figure 32. Two-layer Model.
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Figure 33. Multilayer Model.

64




Ptk

Temperature (T) ' Gradient {G)

.. -.2 -1 0
68 _7L0 810 l 13 |2 i 0
Steps 1P/5fc | =

100
|

| , - 200

Steps 1F/10ft

| /o

|

‘ [ 300
27/20£t | Depth

I @)

| 400
4F/40ft |

|

| 500
2P/40ft

|
2F/60ft ~ 600

|
2F/80ft

a l b
L. 800

|

Figure 34, Step Structure Model.
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2. Coutinuous Curving Gradieats

Since tinite values are used for both depth and temperature, a
rri:ly continuous curve cannot be drawn. The spacing by the CalComp
plotter =f avsry hundredth of an inch can cause variations of this
size. Computed values of depth, temperature and temperature gradient
were provided as inputs to a CalComp plotter at every hundredth of an
inch to create a quasi-continuous curve, at least o a resolution of the
plotter. It is this quasi-continuous field which accounts for the 0.01
inch steps encounter«d in curves drawn by the plotter for any truly con-
tinuous curve. This effect is also present whanever tho plotter is
drawing any line not directly in the X or Y axis directions. Accordingly,
any steps shown of this size could be considered as possible adjustments
made by the plotter or data to adjust to the hundredth of an inch grid.

Two examples of conzinuous gradients are given to show the
resulting distributions of gradient with respect to depth.

a, Gaussian

An example of a Gaussian profile (Figure 35) shows a normal

distribution of tempersture with depth for the function, like

2
2

(=]

T(Z) = 80 -

b= |

Z 1 .2
-=x
f e 2 dx (8)

where: X = 3 dummy variable

80 = gea surface temperature.
The G-Z curve highlights the changes in the T-Z curve. The increase in
gradient strength {3 very clear, reaching a maximum 200 feet, whereas
the inflection point of the T-Z plot is difficult te {ind by visual

inspection. The summation of signed strength vaiues at every foot of
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Figure 35. Gaussian Model.
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depth from the surface down gives a total temperature change which is
analogous tc the product of magnitude and signed strength with all
magnitudes set equal to one. With this summation and a given sea surface
temparature (5ST), a continuous temperature profile can be reconstructed.
b. Exponential
Using an exponential expression for the temperature distri-
buticn

T(Z) = 60 - 20e T-/1000

(9)
where :

60 = SST,
the T-Z (Figure 36a) and G-Z curves (Figure 36b) appear as compliments

of each other. The derivative of T(Z) with respect to Z gives:

-2/ 1000
1) , re
aZ . 50 (10)

which is the equation of the G-Z plot,

3 Superpositions

In the example of layers superimposed on an exponential model
(Figure 37), the conditions for the exponential ( 9) hold for the depth
intervals: surface to 40 ft, 220 to 340 ft and 460 to 809 ft, with
various layers at the remaining depths. Isothermal layers exist below
the weak surface expunential gradient layer and also in the 140 to 180 ft
depth layer. From the T-Z plot, the layers at 340 and “u0 ft are not as
evident as they are in the G-Z plot,

4. Inversions

A model with two inversions and several linear steps (Figure 38)

shows the positive gradient regions clearly. The second deeper inversion

1i clearly a weak gradient, but it is still discernible in Figure 38b.
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Figure 36,

Exponential Model.
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Figure 37. Exponential Model with Layers Superimposed.
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Figure 38. Multi-Step Model With Two Inversions
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With inversions, summing the signed strength values for each foot gives
the temperature change from the surface and adding this value to SST

yields the actual temperature at any depth.

B. OBSERVATIONAL CASES

Several different oceanic regions were selected to establish fea-
tures of this model. The oceanic regions explored were along the Atlantic
Coascbin the Andaman Sea, Eastern North Pacific, and the Gulf Stream.

1. Atlantic Coastal Region

Stations in Massachusetts Bay occupied during December 1969
were used. The stations were within a radius of 13 miles. Water depths
were between 280 and 420 feet. Lack of strong gradients in all seven
traces shows that the water was probably well mixed (Figures 39 through
42). A positively signed strength in the upper 300 feet was common in
the traces. Inversions (Figure 40) are quite clear in both the T-Z and
G-Z plots. A portion of the actual XBT trace is shown for three of the
stations. 1In these three cases, there is excellent visible correlation
between the actual XBT trace and the reconstituted T~Z plots which shows
that MICROXBT can resolve very small temperature features. In no case
was there an isothermal layer greater than 140 feet thick.

2. Andaman Sea

In the Andaman Sea, near the Straits of Maalacca, a series of
15 XBT stations from the 18 to 20 July 1969 pericd were used. The
stations were within a radius of 12 miles. Water depths varied between
290 and 380 feet. This oceanic region could be considered somewhat

similar to the Atlantic Coastal region above.
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Figure 39. T-Z and G-Z Plots for Atlantic Coastal Region 6 and 7 December 1969.
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Figure 40. T-Z and G-Z Plots for Atlantic Coastal Region 7 December 1969,
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Figure 41. T-2Z and G-Z Plots for Atlantic Coastal Region 9 and 10 December 1969,
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The T-Z plots (Figures 43 through 50) contain a mixed layer to
200 or more feet except for one observation at 1200Z on the 1Sth (Figure
48b). The mixed layer transients are marked with spikes in the G-Z plots.
Figure 50 shows transients with the greatest magnitude in the upper 100
feet. The seasonal thermocline is characterized by two steps (Figure
44, for example). The G-Z plots in most cases show this second step,
averaging at a depth about 300 feet, with good resolution. Some strong
gradients are found in the 200 to 300 feet depth region in every G-Z
plot except in Figure 48b. This figure appears to indicate flow over a
hump or have erroneous depth values. The fall-ra:e of the XBT probe,
appearing erroneously in the T-Z plot, indicates a possible malfunction —
of che probe or the recorder for this one cast.

3. Pacific Oceanic Region

A series of XBT traces, taken over a week period in October 1968,
in the deep waters (over 100 nm off the West Coast near San Diego,
California) were used for this observation. A composite T-Z piot of
the actual XBT temperature-depth traces is shown in Figure 51. This
regiva is sub-tropical oceanic [Tully, 1964]. Piots of T-Z and G-Z
(Figures 52 through 65) are presented from the surface to 900 feet. The —-
seasonal thermocline is evident in all plots. The strong thermocline is
clearly shown. Some transients are notable. Few inversion layers were
present, and, generally, they were found only in the near-surface layer.
The G-Z plot is characterized by ;trong gradients in the seasonal thermo-
cline and by weak gradients in the main thermocline, eacl. separate layer
separated by isothermal waters from one to forty feet thick.

The mixed layer contained numerous temperature {luctuations in

most cases. Some inversions, in particular the one at 0600Z on 14 October

77




= /[

180769 0800  O0BOON . “0981SE

6(x10}) F/fe

T(x10})P
0 003 -032 -Q0i 930 Qa3
o
B 8
_ﬁ g
=
Z(x10%) £t
180769 1400 0552N 09823E

Pigure 43. T-Z and G-Z Plots for Andaman Sea Region for 18 July 1569,

8




V V']

J

180769

9

1800

-1
& g,

Z(x102) ft

0600N

09815E

T(x10%)F

Qa3

180769

2000

Z(xlOz)ft

0600N

098515t

Figure 44, T-Z and G-Z Plots for Andaman Sea Region for 18 July 1969.

79




R . 3
—
S o
L
T
) — /
-]
Z(x10%)ft
183769 2200 0B600N 09815E.
cx10™!) p/fe T(x10})F
- ;oos 033
I

L= )

_____

PSR S, —_—— e - ———— 5 ——

“2(x10%) e
191769 0odd 0550N 09639k
Pigure 45. T-Z and G-Z pPlots for Andaman Sea Region for 18 and 19 July 1969.

80




/]

/

z(x10%) ft

190769 0200 U557N 0983SE

NMMM LM% [
L

6(x10"1) P/t T(x10%)P
-0 -033 -002 -GCi 033 Qa9
| ~
&

;';:? /
= /|
o ‘
N Z(x-l‘o.zh)“ft

196769 0400 557N 096408
Figure 46. T-Z and G-Z Plots for Andaman Sea Region for 19 July 1969.
81




|

l i

:hf A Ml oo
L

190769 0800 0558N*’*09842F

-1
G(x10 ) F/ft 1
o o2 ‘m'l'(xlo ) 4

000
g[_'

o—

p———

J

S -
—— /|
e et - //

Wk

L

2(x10%) £t

190769 0800 0600N 09814t

Pigure 47. T-Z and G-Z Plots for Andaman Sea Region for 19 July 1969.
82




r:‘
1
|
|
!
1
%

i

—Z(xI102)Tt

190769 1000  0BOON  09814F

-1 '
6(x10™Y) F/ft - (102
-0J% -033 -002 ~00a sl © Gl
i
'r'-=

=

| 2(x10%) £t )
190769 1200 0617N 09824E
Figure 48, T-Z and G-Z Plots for Andaman Sea Region for 19 July 1969.
83




L= //

1

190769 1800  0B1ON " 09832E

. 1
6(x107y p/ge » T(x10h)P
Bh e} =033 -002 -gl1 03 Q34
[ m—
4]
'l
g L
el
ittt g
(‘

RN

190769 2200 0B8N 09831E

Figure 49. T-A and G-Z Plots for Andaman Sea Region for 19 July 1969.
84




004 ~GS3

e(x10"Lyp/ £t
032

-gcl 03

g

T(x10%)F

o)

|
|

Y

200769

Pigure 50,

0000

Z(xloz)ft

0B22N

08832k

T-2 and G-Z Plots for Andaman 3ea Region for 20 July 1969,

85




ca i
34 AT B
3

Iy
cacts

Ojl [y

LX)
[

i1

]J:'[" .

4

g3

SRS RE
n el
ALY

'-
L

!
Coat Sart

'Y e ™

.-

.
SR

J
it

2C0 F

.
-te

Vo e

2C0 FY

=

o

Fo
760 7T

bteye

ys

ot

A

U

i"A

i
4

I

Crag
! urqf‘ﬂbU

11ICD F

- 4=
i-}-

el X
.t;:l.. -f-,.;.t-i,.
Si[500 FT

LU

1 H g
oo b0 g malom o

+
Ll
=

et e

)

1800 FT

~[900 F

R fudad mted

'
srmai—

-p- -:‘.l- ,?C\ .l-l-‘.-'r
PERATURE °F;

R

FACE

jeie

rd

3
rod o 2T “r1lai4n
» + . 1§ ._ 1
TR R
3 ] e «f ¢ t )
i 1 T i
: $ :
” 7

otmi == e[ Fori ]

T80
K

i..L- - TE

e

!

:Hu !
T e
l Y
'L.
cof At

td
i

: .
O e PN
ot

I~

" T

- -t_Jl-.'-.
| PSR

y T

FRUSYON Ny i Sy |
+ Vo

e le
]

me e pege]e
snteha

LA

of.

.y '—-.-.
]
1" 47

0
[}

Ao

-

.

" 'A. gu e
R

- ._L

tome [
R e

 pad ot e g o

[UFPPR T Py Sy R
s

e e e e B e

Y e

bola

SREEIE

o 0o
o e

¥

)
(L 25

{..

Ak

.05

Data are given in time

Composite T-Z Plot from Actual XBT Traces Down to 900 feet
sequence from 10 through 16 October 1968,

for Region 100 nm off San Diego.

86

Figure 51.

=g oi - S
S D Ny ! NEA SRR IR &
.l,”. P, SN k! NN NN R R
= NG i . mnE NGl
j ,IDT%L oL .L:IJW R I e
—} b / L3 : ! syl .. JEIN BN 08 ~ 1l i bt n_..
Ty nq.../ y .* - 'u...m u.-. s Ty - _.ﬁlvu' -_.
g B 3 e NN B 0 U By R Wy R N0 B Toderd L
gk B8 8 ol o B R EE T R I R pe e <2 L Y Jit oy
.. -L. \ ¢.|.... _..L.l..L.T, T..--..-T.l-_.v.i Pl—l- ...““ KR N L e
s S FO S TR w_r.w.ww;-:._ac..*,r ool du
—1ilattlo|rlotititilo] ivali loli loftle
—1-13li ol o ‘..ﬁ:nu.r?u‘wnu..nu~.nv
'll”(..- o1 ..Jtvou. V2 nyf ~ ) O
al;.~;uuu..u¢J A NN AR RN AR R A BN N U RN




433

-l

/W

My

i

5,

Auth \Mﬂhmk;;

LL o

—

n—l
-
—

-]
—]

—

2
-~

['\.‘

101068

Pigure 52.

L8003 24BN

T-Z and 5<% Plots for Bastern North Pacific for 1800Z 10 October 1968,

87

12043NW




i 14

o

|

e P

| Sec—o

L,l

ﬁ
|
|

)

Ay

xfﬁ& MMV%AL&MI‘P Mﬂ 8

e Lol o |

{.

111068 0600*"3240N  12039K

Figure 53. T-Z and G-Z Plots for Eastern North Pacific for 0000Z 11 October 1968.
88

U e Nmein A a e e e S



At L il

1)

12 10RG 0000 2900 5y 4 120150

Pigure 54.

T-2 and G-Z Plots for Rastern North Pacific for 0000Z 12 October 1968.

85




oe
i

|
af

\

[hVAI
I

|
-ﬁ
T

)

|
mfm\n TN MMN}

|

2
-~ Z(x107)ft__ -
121068 0600 3227N 11953K
Figure 55. T-Z and G-Z Plots for Eastern North Pacific for 0600Z 12 October 1968.
90




l

b o oo i -

Pigure 56.

121068

f
4

a1y

Z(x10%)ft

3252N

31

17

L?"}A

2

T-Z and G-Z Plots for Eastern North Pacific for 18002 12 Octoher 1968,




|

P iaadntinta

-

—— |

n th‘ﬂwlm L MMHMW!TA /’! fﬁ}Man

ey

[
-

=

= .

131065

T-2 and G-Z Plots for Rastern North Pacific for 0000Z 13 October 1968.

Figure 57.

z(x102) ft

0000

92

3252N

120524




=S
%

|
|
|
l
|

|

2(x10°) ft

131068 0600

FPigure 58. T-Z and G-Z Plots for Eastern North Pacific for 0600Z 13 October 1968,

93

3223N

12027K




[,

|
%

ﬁ“ﬂmLﬁLﬂJlL%AﬁMMLMUJMULﬂUJﬂngﬂ1Hﬁmy

Z(xlOz)ft

131068 12007 "3228N  120284°

Figure 59« T-Z and G-Z Plots for East:rn North Pacific for 1200Z 13 October 1968.
94




|

li

b

|

t
—

|
3y
N

I

MV AMDA}LM_M_MILJ LMM&M A MMMMWMF k

2(x10%) £t

131068 1800 3252N 120471

Figure 60. T-Z and G-Z Plots for Eastern North Pacific for 1800Z 13 October 1968.
95




2(x10%)ft
141068 0600 3215N 12025K
Figure 61. T-Z and G-Z Plots for Eastern North Pacific for 06002 14 October 1968.
96




TN g7

=1

Pigure 62,

141063

1200

97

Z(x102) £t

3224N

12030K

T-Z and G-2 Plots for Eastern North Pacific for 1200Z 14 October 1968.




il M

i

|

l i

Jl i i Nind J o

141088 1800 Uf043N 12045K

Figure 63. T-Z and G-Z Plots for Eastern North Pacific for 1800Z 14 October 1968,
98




:=%=%;i§g 4

—ad
L3
[}

=

i

— OOV s -SRI P SR

=

151068 0000 240N 12040M

Pigure 64. T-2 and G-Z Plots for Rastern North Pacific for 0000Z 15 October 1968.
99




cR———

-

i

2(x10%) £t

1610863 0600 3214N 12030H

Figure 65.

T-7 and G-Z Plots for Bastern North Pxcific for 06002 16 Octcber 1968.
160

e A AR MRS 4




—

1968 at 120 feet was clear on both the bathythermogram and the T-Z plot.
The steps are quite irregular on the T-Z plot but not as irregular as on
the G-Z plot.

4 Gulf Stream Region

Thirteen stations, duriag the period 11-13 August 1969, were
analyzed for the Gulf Stream region (Figures 66 through 80). The ship's
track crossed the Gulf Stream boundary several times.

a. Interior of Gulf Stream

For the interior of the Gulf Stream (Figures 70 and 71),
the mixed layer is distinct and a typical seasonal and main thermocline
are shown. A "boot" in the 100 foot layer is clearly shown by positive
gradient values in several of the figures and the actual XBT traces.

b. Frontal Region

Strong gradients are the rule for this region and they are
quite distinct in both the T-Z and G-Z plots. The contrast between

the frontal and interior regions of the Gulf Stream are quite apparent.
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VI. CONCLUSIONS

The results give a measure of the microthermal structure obtained

with an XBT by the NDM.

A. PHYSICAL SIGNIPICANCE

Microthermal structure statistics have not been adequately explored.
This thesis has proposed an easy method to observe the fine-s:ale thermal
structure. Purther, this proposed objective analysis scheme does not use
the T-Z values but rather the G-Z values. It (s the G-Z distribution
vhich {s important. The T-Z can always be reconstructed if one additional
parameter, the SST, is known.

1. Internal Waves - Vaisala Prequency

. The Brunt-Vaisala frequency is the maximum frequency of oscil-
latfon of free internal waves. 1t may be calculated from the density
gradient, or from the parameters which define density gradient. In
isohaline water, the NDM gives a direct measurec cf denzity (or stability).
In such vaters it could be used to set an upper limit on the maximum
frequency of oscillation of internal waves. Fuither, a time seories
study vould clearly illustrate the amplitudes likely to be enccuntered
since the sheats indicated on the G-Z diagram are readily {dencified.

A correlation study of C-Z, Brunt-Vais&ld versus depth diagrams would
be useful.

2. Oceanic FPronts

This difficult region Lo analyze microscopically could possible
be better explored by using the NDM for the microthermal processes. The

NDM explores the continuously changing conditions it frontal regions.
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Frontal regions are usually indicated by extremely complex G-Z plots
which fllustrate the extreme gradieants, both positive and negative,
encountered. Based on the admittedly small number of cases examined,
there appears to be a tendency of the layers to maintain their character-
istics and slide by, over or under each other rather than mix.
3. Sound Propagation

The effect of microthermal structure on sound propagation
require hetter statistical knowledge of the oceans, The NDM gives
emphasis to the strongest gradient regions,

The microthermal effects on index or refraction variations

(density fluctuations) must be determined. Using the NDM with salinity

variations (from an STD cast) and the NDM with sound velocity variations

(from an SVTP cast) taken from the two instruments simultaneously, cross-
correlation techrniques could shed some light on the unresolved micro-

processes in the ocean. In particular, what are the exact physical and

theoretical correlations among the salinity, temparature, and sound

velocity.

B. SUGGESTEh STUDIES
Possible studies for the future have suggested themselves while
developing this thesis.
1. Mathematical Models
Various mathematical models attempted could be explored further
bgclusc each method had some merit. Sugqgested models are limited by
their utfility.
a. Analysis Methods
The microthermal structure recorded by XBTs can be looked at

as a "roughness' factor, the noise level of the water structure. Further
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work is required to determine such a factor for practical operational use,
This roughness factor should be computed as the XBT trace is being
analyzed at FNWC by a program like DIGITBT. This factor could be one

" number to describe objectively the microthermal structure variations on
the G-Z trace.

Variations in the NDM should be used with the variables that
have been arbit arily set. For example, the depth interval of AT/ft
at one foot should be varied tr find the effects a larger or smaller
depth interval would have on the G-Z profiles. As the steps become
smailer, the exact derivative is approached. Larger steps should smooth
the spikeé shown in the G-Z figures. 1In some cases, this smoothed G-Z
profile might be described with curve fitting techniques as suggested by
Boston [1966] and Grosfils [1968].

MICROXBT's digitizing interval of 0.0l inches should be
changed to 0.005 inches and the program modified to use this interval,
This would yield mure detailed thermal st>ucture than MICROXBT, Obviously,
one cannol: meke tte interval finer than the noise level of the sensor or
recofding irnstrument.

b. Physical Processes

The G-Z profiles from the NDM emphasize the changing physical
fcatures which are obscure in the T-Z profiles. By using G-Z profiles
for parameters other than temperature, clarity in determining distri-
butions of chemical parameters would be similarly emphasized. Limitations

in usehpf the NDM on other chemical properties should be further
investigated.

Water mass identification i{s possible with G-Z profiles.

Additional work is required in this area.

119



2. BExperimentgl Work
A microthermsl sheet probe could be dssigned for investigating the -

chemical and physical processes inside the sheat and inside the laysrs.
A comparison of actual physical property differences should ba wmade.

A modified expendable temperature gradient (XTG) meter could be
designed using two thermistors to obtain the temperature differences in
the probe. The standard XBT system equipment already installed could be
changed to give analog G-Z profiles to the operational user without any
delay.

8. Time Series

The XTG meter could be used to construct G-Z variability at
one location by conducting a time series analysis. This needs to be
done in order to obtain a roughness factor, an objective microstructure
measuring parameter.

b. Treansect

An XTG meter could be used in transects across various water
masses to obtain the jefinite characteristics for the water masses., The
XTG could be used to follow interesting features on the G-Z plots. More
important, however, is that the spacial characteristics of microthermal
structure could easily be determined.

3. Hendling of Data

When the microthermal structure roughness factor is determined,
this factor should be made an integ-al part of the records for that XBT
trace. This information should be included as part of the ID data.

Aboard Navy ships the AN/UNQ-7 tape recorder could be used to
obteir magnetic tape records of the spalog XBT or X1C sigaais. These

tapes ould be eabmilted with the tvreces 1o FHEC 1 NPE for further amals




4. Maval Applications

Results from microthermal studies show that high frequency sonar
performance as {nfluenced by the microstructure receive the greatest
microstructure effects. More knowledge of the microstructure is needed
before the torpedo and mine-hunting sonar performance could be improved.
With a measure of the microstructure, the performance of a sonar system
could be predetermined.

Tens of thousands of XBT traces are on file at FNWC. New data
are arriving daily. This thesis is an attempt to show how this data can
be used both operationally and scientifically., Obviously it represents
only a beginning in the way of microstructure analysis and operational

utilization.




APPENDIX A

MICROXBT FORTRAN IV PROGRAM FOR CDC 6500
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APPENDIX B

MICROTHERMAL STRUCTURE ANALYSIS FORTRAN SOURCE PROGRAM

FOR IBM 360/67
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APPENDIX C

JOB CONTROL IANGUAGE (JCL) FOR READING FNWC TAPES
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R i)

1/ (Job name) JPB (Acct. no., Job no., Section), '(Your name)' Note 1
/1l EXEC  PPRTCLGP,REGION=100K,TIME.Gp=2 Note 2
//PPRT.SYSIN DD *
FORTRAN Source Deck

/% Note 3
//GH.FTO6F001 DD SYSPHUTeA,SPACE(CYL,6) Note 4
//GH.PTO4LFO01 DD UNIT=2400-1,VPL=SER=NPSXXX,LABEL=(,NL), Note 5
/l DCB={DENw=]1 ,RECFM=F , LRECI~136 ,BLKSIZE=136 ,TRTCH=ET), " 5
// DISPw(HLD,KEEP) Note 5
//GH PTO4F002 DD AFT=FTO4F001,VPL=SER=NPSXXX,IABEL(2,NL), Note 6
1/ DCB=(DEN=] ,RECFMsF , LIRECL»136 ,BLKSI2E=136 ,TRTCH=ET), " 6
// DISP=(fLD,KEEP) Note 6
//G8.5YSIN * Note 7

DATA Cards, if any

/%* (Orange Card)

Notes

Standard JPB, green card, for program submission.

I1f not plotting or card punching, the FPRICIGP can be changed
to FPARICIG.

Must be a white card,
Optional card for additional storage for output.

The XXX following NPS is the NPS tape number. These three cards
are for reading the first file on the input tape. These cards
assign input unit 4 for the source programs READ statements,
Further note that the record length is 136 characters, all of

which may be read. This is the standard record length from the
CDC 3600.

For a third file to be read, these three cards must be repeated
with F002 changed to F003 and IABEL(2,NL) changed to IABEL(3,NL)
and so forth for additional files. Also the UNIT=2400-1 should
be changed to AFT=FTO4F001 for all files after the first file.

If only one file is to be read, then these three cards are not
required,

Not required if there are no input data cards.
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APPENDIX D

JOB CONTROL IANGUAGE (JCL) FOR DUMPING FNWC TAPE DATA
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//(Job name) JPB (Acct. no., Job no., Section), '(Your nama}' Note 1
/ /DUMPTAPE EXEC PGM=IEBPTPCH
/ /SYSPRINT DD SYS@UT=A

//SYSUT1 DD UNIT=2400-1,DI3B=fLD,IABEL=(,NL), VALUME=SER=NPSXX, Hote 2
// DCB=(DEN=1,RECFM=F, LRECI=136 ,BLKSIZE=136 , TRTCH=ET) No*z 2
//sYSuT2 DD SYSPUT=A
//SYSIN DD *,DCB=BLKSIZE=80
PRINT MAXFLIDS=1,STPPAFT=1000 Note 3
RECORD FIELDS=(120) ' Note 4

/* (Orange Card)

Notes

1. Standard J@¥b, green ca:d, for program submission.

2, If more than one file is on the tape then separate two cards for
each file identified by file number by the file number in the IABEL
(X,NL) where S is the file number, which is implied 1 when omitted.

3. The STPPAFT limits the number of lines of printed output, in this
example 1000 lines is used before printing is terminated.

4. The field is recorded at the maximum amount that this program will
dump which is 120 characters. 1If there are any characters between
120 and 133 in the records then this routine will not dump those
characters.
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